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1. Abstract
In integrated optics, tapered waveguides usually possess step changes in waveguide width or
other dimensions, due to lithographic limitations. We present a theoretical asymptotic analysis of
the effect of these steps when compared with the ideal smooth taper. We present some figures for
the size of the effect, conclude that the effect is significant in certain situation and that making
the taper too long will reduce its performance, or in the worst instance cause the taper to function
as badly as a butt join.

2. Introduction.
Tapered waveguides are commonly used to channel a guided light signal from an input
waveguide into an output waveguide with different cross section, for example to increase the
efficiency of the coupling between a laser chip and an optical fibre (so called “spot size
convertors”) [1,2]. Tapers are usually fabricated by a lithographic process. This is particularly
true when making tapered structures in integrated optical components. In practice, due to the
finite resolution of the lithographic mask, the resulting tapers will contain small uniform steps in
the profile. The presence of these small steps will alter the transmission properties of the taper.
This paper investigates the effect of these small steps and demonstrates that their effect can have

Stretch…

Figure 1. As a smooth taper is stretched power will be conserved in injected mode, as is seen from this graph of
power remaining in the fundamental mode vs. taper length.

Power in fundamental mode
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a very significant effect, even for steps of 1/20th the operating wavelength (0.05µm at the 1µm to
1.5µm band) – generally the limit of conventional technology.

It is well known that smooth tapers, i.e. waveguides whose cross section changes
smoothly from the input to the output waveguide, become adiabatic as their length tends to
infinity. Adiabatic in this context means that the power in each local guided mode is conserved
along the taper. Efficient transmission into the output waveguide is therefore achieved by
constructing a long enough taper. This behaviour of smooth tapers can be shown using coupled
mode theory: the cross coupling between non-degenerate local modes tends to zero as the taper
length increases. Hence if the fundamental mode of the input waveguide is excited, then the
shape of this mode will deform continuously along the taper into the fundamental mode of the
output waveguide without any power being transferred to other modes (figure 1).

In a step taper lateral dimensions vary in a step-like fashion due to the manufacturing process. In
such a taper, it is observed that as the length of the taper increases the modal cross coupling
decreases, as it does in a smooth taper, but then proceeds to oscillate without ever converging to
zero (figure 3). A-priori knowledge of the behaviour of the power transmission for varying taper
length therefore becomes important when designing a step taper with a specified minimum
transmission efficiency.

In what follows we present a study of light propagating through step tapers. We use
asymptotic analysis to derive an approximate solution to the modal evolution equations valid for
a large number of steps. We show that step tapers exhibit rather different behaviour from their
smooth counterparts as their length is increased – the finite step size will cause resonant peaks at
specific taper lengths in the coupling between forward and backward guided modes. The
amplitude of the peaks will be the same when the taper has zero length (the butt join case). The
resonant taper lengths at which these peaks occur depend on the value of the guided mode
propagation constants and increase with the number of steps, so that the resonant points
disappear in the limit of the step taper becomes smooth. The analytic results obtained provide
practical design criteria for building step tapers with required transmission characteristics.
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Figure 3. Graph of the power transmission into the output fundamental
mode as the step taper is stretched.

3. The step taper
The following analysis is valid for step
tapers of arbitrary cross section. We
consider a step taper, which could be a
ridge or buried waveguide in a chip
surrounded by a cladding or a base layer.
Both the core and the cladding are
assumed to have a sufficiently high
refractive index with respect to the
surrounding medium so that it will have
a set of local guiding modes at any point
along the “z” axis (figure 2). Numerical
experiments (figure 3) show that as the
taper length is increased, oscillations
appear in the transmitted power. By
looking in detail at the propagating field
in tapers with lengths giving low and
high loss respectively (figure 4), we can
clearly see the resonant nature of the
mode coupling. For the low loss taper,
the power begins to couple out of the
excited mode, but couples back in before
the end is reached. For the high loss
taper, the power couples out of the
excited mode at a constant rate.

cladding or base layer

core or ridge

air

Multimoded

Figure 2. The entire structure is assumed to be a multimoded region at all
“z” positions.

mode 1

mode 2mode 3

high loss low loss

Figure 4. plot of fields and mode power for taper lengths that are resonant (maximum power coupling from fundamental into
higher order modes) and non resonant (minimum coupling). Notice how in the latter case the transmitted power swings back into
mode 1.
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4. Solution using local modes.
In each uniform cross section of the step taper the field can be expressed in terms of its modal
expansion.
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where
[ ]kk HE ,   are the discrete set of the J guided and evanescent eigenmodes,

( )zkβ  their respective propagation constants,

radrad HE ,  the radiation components.

Continuity of the tangential fields across consecutive sections m, m+1 and the orthogonality of
the modes implies that
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• “ l ” is the step length,
• mm ,1+O  is the cross coupling matrix at the interface between steps given by

dsO m
j

m
k

mm
jk HE∫ ∧= ++ 1,1

• mm
rad

mm
rad

,1,1 , ++ he  are the radiation contributions given by

( ) dse m
j

m
rad

m
radj

mm
rad HEE∫ ∧−= ++ 1,1   ;   ( ) dsh m

j
m
rad

m
radj

mm
rad EHH∫ ∧−= ++ 1,1

By rearranging (2) to make 11, ++ mm ba explicit we obtain
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- the symmetric and anti symmetric coupling matrices.
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5. Asymptotic analysis.
The aim is to derive, given an input 1a at the beginning of the step taper, an expression for

mm ba ,  and the excitation of the radiation components. In principle this is done by combining
system (3) at each interface. Unfortunately, the presence of the radiation components prevents us
from doing this. We therefore assume from the outset that coupling into radiation modes can be
ignored (we will see later when this is justified, and what happens if the coupling is significant).
In this case system (3) reduces to:
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Now, let M be the number of taper steps. If we assume many steps (large M), then the difference
between successive steps is small. The cross coupling is therefore also small so that the coupling
matrices (4) can be separated into quantities of different scale:
(6) mm
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asymptotic solution is found. Under this assumption we can equate terms of the same order.
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At this point we assume that there is no input field from the rhs ( 00 =Mb ), so that from (8),
00 =mb  for all m. Hence:

order 1: 
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the top line can be rewritten as

(9) 
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Note that (8) is the solution for a straight uniform waveguide, while (9) provides the O(1/M)
correction. In order to solve the latter explicitly we need to make a couple of extra assumptions,
namely that the propagation constants and the cross coupling matrices are approximately
constant from one section to the next, so that we can write:

ββ ≈m      ( = some average value)
and



Special Issue of Optical and Quantum Electronics, 2001. 6

M
Fmm

o
KS ≈+ ,1   ;  

M
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where BF KK ,  are the cross-coupling matrices for the equivalent butt for the forward and
backward propagating modes respectively.

So from (9):
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Now suppose that the input field to the taper is the excited fundamental mode of the input
waveguide, i.e. [ ],...0,0,11

0 =a . Then we obtain
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The latter can be summed to give:
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Hence total power lost from mode 1 in a step taper of length L with M steps is obtained by
summing up the power coupling into all forward and backward propagating modes:

(11) 
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where we have replaced the step length “l” with “L/M” and have combined forward and
backward propagating components by replacing:
• 11, jBjF KK  with 11, jj KK −  ( j>0) respectively,

• jβ−  with j−β ( j>0)
A few points to note:
1. The above expression is only valid if the

individual terms in (10) remain of order 1/M.
This is true in principle only so long as the
denominator in each term (10), and therefore
(11), remains bounded away from zero. j

M
ββ

π
−1

2

min ~ 1/M2

2

1jK

Figure 5. plot of j’th component in (11)



Special Issue of Optical and Quantum Electronics, 2001. 7

2. At these singular points (figure 5) the power loss blows up. The peak power at the singular
point for the j’th term in (11) occurs at lengths

(12) n
j

ML
ββ

π
−

=
1

2  (n=0,1,2,…)

3. On performing a local expansion around these singular lengths we find that the amplitude of
the j’th term is exactly 

2

1jK . This is the same as the cross coupling for the butt join between
mode 1 and j (forward mode if j>1, backward if j<0). Strictly speaking these values violate
our initial assumption that the perturbed values remain of order “1/M”. Nevertheless they do
provide a good idea of the behaviour of these solution.

4. The power loss (11) is a superposition of the individual modal interactions. For a zero length
taper all interactions are at their singular peaks, so that the power loss at L=0

is ∑
≠−=

= =
J

jJj
jLloss KP

0,

2

10 , which is exactly the power loss expected in a butt join. This confirms

the validity of this expression even when the asymptotic conditions are not met.
5. As the length is gradually increased the power loss decreases exactly as it would do for the

smooth taper, but will then rises again once the length reaches the first resonant length L0,
which corresponds to the fundamental BACKWARD travelling mode. This is given by (12)
with n=1,j=-1:

(13) 
1

0 β
πML =

and the power coupled into this backward travelling mode is of the order 2
11RK - the

coupling coefficient from forward mode 1 to backward mode 1 for the equivalent butt join.
6. This first resonant length L0 will occur even if there is only one guided mode present (J=1 in

(11)). If the step taper structure in figure 2 is indeed multimodal (J>1) then as the step taper
is stretched peaks will occur at the subsequent resonant lengths (12).

7. The resonant interactions with the backward propagating modes will be significant if the
reflection coefficients BK  of the equivalent butt join are significant. This will typically occur
when the dimensions of the end cross sections are very different, and/or in the presence of a
large refractive index contrast between the core and cladding. See figure 8 for such an
example.
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8. As we increase the number of steps the resonant lengths increase (figure 6), so that in the

limiting smooth case (infinite M) the only resonant peak remaining is the one at zero length
(the butt join). The power loss in this case is given by setting M to infinity in (11):
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This is precisely the expression derived using the continuous coupled mode equations found
in various texts, such as [3], except that this result is more general as it includes interactions
among all forward and backward modes instead of just two forward modes found using the
continuous approach.

6. Radiation modes.
The results obtained up to now ignore the interaction with radiation modes. This is justified if the
refractive index jump at cladding/air interface in the structure in consideration (figure 2) is

M=7 M=10

M=20

21

2
ββ

π
−
M

31

2
ββ

π
−
M

2
31K

2
21K

Figure 6. Power loss (11) vs. taper length L taking into account the first three modes for different number of
steps M.

Figure 8. Length scan of a step taper showing power remaining
in fundamental forward and backward mode, and total reflected
guided power. The step taper has 8 steps. The taper core has
average index of 3 and cladding index of 1.5. The input and
output core sizes are 1.5µm, 3µm respectively. Wavelength is
1.55µm. These are realistic values for silica rib waveguides.
The high contrast in dimensions and refractive index cause
peaks (e.g. step length=1.15) of the order of the predicted value
– i.e. the butt join coupling (at step length=0). Note the peak for
the very small step 0.2µm, which is even higher than this
predicted value.

Fwd. mode 1

Bwd. mode 1

Tot Bwd power
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sufficiently high to prevent any power escaping from the cladding. This will be typically the case
given the materials used for fabricating ridge waveguides.
However if the radiation is significant, it can always be modelled by enclosing the entire device
by reflecting side boundary conditions. If the side boundaries are at a finite distance from the
device, the radiation modes will be discretised, and can therefore be included in expression (11)
as a second sum:
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the second sum being the contribution of the dicretised radiation modes. As the distance of
reflecting boundaries from the device is increased, the eigenvalues of the discretised radiation
modes will tend to a continuous distribution. In the limiting case, the radiation contribution in
(15) becomes an integral. Hence:
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where 0β  is the propagation constant of the first radiation mode and RK  the coupling
distribution from the fundamental mode into the radiation modes (which will generally vary with
the propagation constant β  of the radiation mode).
Assuming that RK is a continuous function of β , the integral expression for the radiation
contribution in (16) will NOT exhibit the resonant peaks as L is varied, since the kernel
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is a smooth, bounded function for all L.
The absence of these resonant lengths is physically explained by the fact that a negligible amount
of light scattered into radiation modes from one taper step is likely to couple back into guided
modes in neighbouring steps, so that no coherence effects as the one in figure 4 can occur.

7. Application.
We find that as the length of the step taper is increased from zero the power loss decreases as it
would do for a smooth taper but then increases to a peak at the first resonant length of the
highest guided mode – eqn. (13). The peak amplitude is of the same order as the coupling into
this mode at a butt join. These peaks recur periodically as we increase the taper length further.
Therefore when designing step tapers it is desirable to keep their length below the first resonant
length. The resonant length increases by augmenting the number of steps M in the taper. In
practice these are limited by the resolution in the lithographic fabrication process: M<∆W/δwmin,
where δwmin is the minimum step size allowed by the lithographic fabrication process and W∆
is the difference in widths of the guiding core at the taper ends. This puts a restriction on δL –
the distance along the device between steps (δL=L/M). Eqn. (13) implies a safe upper limit for
δL of
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(17) 
10

max ββ
πδ
−

=L

- this being half the resonance length. Above this value, the taper efficiency will decrease again.
In Figure 7 we plot some values for δLmax for a simple example of a 1D step index waveguide, at

a wavelength of 1.55um. The core refractive index in each case is 3.5 and the figure shows
values of δLmax as a function of core width, for ∆n values of 0.05, 0.2 and 1.5.

8. Conclusions
We have done an approximate multimodal analysis of the step taper. We have derived an
expression (11) for the power lost from the excited input fundamental mode valid for large
number of steps M. By setting M to infinity, (11) gives the power loss for a smooth taper, (14),
which is a more general result than that found in various texts [3] derived using coupled mode
theory. The results indicate the existence of resonant taper lengths at which the power coupled
from the fundamental mode into another mode reaches a sudden peak. Worthy of a note is that at
these lengths the power may couple into a backward instead of a forward travelling mode, so that
significant reflections may appear in structures with a large enough refractive index contrast
between the core and cladding.

These results contradict the conventional wisdom that “longer is better” for real tapers –
making a taper too long may reduce its efficiency. We present simple formulae that can be used
to determine how long the taper can be made without hitting the effect of the steps.

Figure 7 – variation of δLmax (the distance between steps) for a 1D step index waveguide.
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